温度调谐技术测量 CO₂ 在 6320~6336 cm⁻¹ 波段的吸收光谱

李金义 杜振辉* 齐汝宾 徐可欣

(天津大学精密测试技术及仪器国家重点实验室,天津 300072)

摘要 针对当前可调谐半导体激光器吸收光谱(TDLAS)技术中调谐范围、调谐时间以及系统复杂性方面存在的不 足,提出了利用激光器模块中的热电制冷器(TEC)和负温度系数(NTC)热敏电阻等元件对激光二极管(LD)进行 温度宽谱调谐的方法,并在快速温度调谐过程中精确计算激光器的辐射波长。利用温度调谐二极管吸收光谱技术 在3s的时间内测得了 CO₂ 气体在 6320~6336 cm⁻¹ 波段的高分辨率吸收光谱。在此波段共测得 8 个较强吸收 线。将得到的光谱参数与 HITRAN 2008 中的数据比较,吸收线位置、线强以及半峰全宽(FWHM)的偏差分别小 于 1%,3%以及 6%。另外,测得的 14 条较弱的吸收谱线也与谱库中的谱线参数吻合。

关键词 光谱学;可调谐半导体激光器吸收光谱;温度调谐;谱线参数

中图分类号 O433.5⁺1 文献标识码 A doi: 10.3788/AOS201232.0130004

Measurement of Absorption Spectra of CO_2 at $6320 \sim 6336$ cm⁻¹ Using Temperature Tuning Technique

Li Jinyi Du Zhenhui Qi Rubin Xu Kexin

(State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China)

Abstract There are some disadvantages in the current tunable diode laser absorption spectroscopy (TDLAS), such as tuning range, tuning time and system complexity. A fast temperature tuning method of broad spectrum is developed and the dynamic wavelength of the laser is calculated precisely during the temperature tuning by means of thermo-electric cooler (TEC) and negative temperature coefficient (NTC) thermistor integrated in laser diode module. The spectral measurements of CO_2 absorption lines from 6320 to 6336 cm⁻¹ are performed at room temperature by using fiber-coupled distributed feedback (DFB) diode laser operating at 1.58 μ m with measurement time less than 3 s. Eight strong absorption lines are obtained and are compared with HITRAN 2008 database, which shows that the deviations of absorption line positions, line strength and full-width at half-maximum (FWHM) are less than 1%, 3% and 6%, respectively. Additionally, the corresponding spectral parameters of 14 weak absorption lines are very consistent with those in HITRAN 2008 database.

Key words spectroscopy; tunable diode laser absorption spectroscopy; temperature tuning; spectral line parameter OCIS codes 300.1030; 140.3600; 120.1880

1 引 言

可调谐半导体激光吸收光谱(TDLAS)系统大都是控制激光器工作在某一恒定温度下,采用电流

双重调制的方式进行气体检测及相关测量^[1~4]。即 给激光器施加一个慢扫描电流,控制激光波长扫描 待测气体吸收峰,同时对激光器加一高频正弦电流

收稿日期: 2011-06-29; 收到修改稿日期: 2011-08-28

基金项目:精密测试技术及仪器国家重点实验室探索课题(PILT1107)和天津市自然科学基金(10JCZDJC22700)资助 课题。

作者简介:李金义(1986—),男,博士研究生,主要从事激光光谱检测方面的研究。E-mail; jinyilee@tju.edu.cn 导师简介:徐可欣(1956—),男,博士,教授,主要从事近红外光谱和血糖检测等方面的研究。E-mail: kexin@tju.edu.cn *通信联系人。E-mail: duzhenhui@tju.edu.cn 信号进行波长调制,根据锁相放大器相敏检测得到 的二次谐波信号幅度,来反演待测气体的浓度。而 电流调谐技术存在以下几个缺点:

1)利用电流调谐获得的光谱范围很小,以分布 反馈(DFB)激光器为例,调谐范围小于1 nm,一般 只能得到单一气体的单个吸收峰。若要进行多种气 体的同时检测,则需采用多个激光器分时扫描多路 的方法^[5],导致系统结构复杂,经济性差。

2)测量过程中需要高精度的温度稳定^[6],激光 器工作过程产生的热量、环境温度的变化,都会导致 激光器工作波长的漂移,从而影响对气体吸收的检 测^[7]。现场应用的 TDLAS 系统中都需要对激光二 极管(LD)做高精度的温度控制,这也增加了系统的 复杂性和成本。

相比于电流调谐,温度调谐(也称热调谐)可以 得到宽得多的光谱范围,同样的 DFB 激光器,温度 调谐可使其调谐范围大于 4 nm,而对应变补偿多量 子阱激光器,温度调谐范围甚至可以超过 30 nm。 可以覆盖多种气体的吸收线或一种气体的多个吸收 线,可以同时检测多种气体;另外,温度调谐时激光 动态线宽窄^[8],也有利于获得信噪比高、选择性好的 光谱信号,提高检测精度。

目前,温度调谐主要有两种方式:1)采用自制的 温度控制装置(如电阻微加热器)对激光器进行慢速 调谐^[9~11],该方法的不足之处在于调谐速度慢,不 能进行实时检测,并且增加了额外的温度控制装置, 增加了系统的复杂性;2)在多个离散的温度点处固 定温度,采用电流调谐,即激光器的温度从一点改变 到另外一点,对温度变化的这个过程并不关心,而是 待其温度达到要求的稳定度后进行电流调谐,将各 个温度点的电流调谐谱段组合起来从而得到较宽范 围的调谐激光光谱^[12~15]。但这一方法需要温度稳 定在某点,稳定所需时间与两点温度差异的大小有 关,一般需要几秒到十几秒,并且操作起来比较繁 琐,不能满足快速实时检测的需要。

本文在利用激光器组件中集成的温度控制器件 [如热电制冷器(TEC)]、温度传感元件[如负温度系数(NTC)热敏电阻]的基础上,不需外加温度控制 装置和波长计等仪器而实现较为快速的(小于3 s) 温度变化(大于35℃),并且在调谐过程中实现激光 器辐射波长的实时记录。对标称波长1.58 μm的 DFB激光器进行温度调谐,对高浓度的CO₂ 气体进 行了测量,在3 s 的测量时间内得到了 CO₂ 气体在 6320~6336 cm⁻¹波段的高分辨率吸收光谱。在此 波段,共测得8条较强吸收线和14条较弱的吸收谱线,并给出了相应的光谱参数,如吸收谱线位置、线强等信息。

2 DFB 激光器温度调谐原理

DFB激光器具有较好的稳定性、良好的光谱和 噪声特性,调制速率高,并有较好的功率输出,成本 低,技术成熟,因此,已经越来越多地作为 TDLAS 测量系统的光源用于大气测量、过程控制、火灾预 警、成分检测和环境测量等领域。

常见的 DFB 半导体激光器具有能够进行腔内 选模的集成内光栅,其横截面结构原理图如图 1 所 示。把这样的结构作为一般化的概念,当激光腔的 温度变化时,一方面,光栅周期几何尺寸 Λ 会发生 变化,另一方面,由于热光效应,其有效折射率会发 生一定变化。布拉格波长的变化与温度变化的关系 可以表示为

$$\Delta \lambda_{\rm B} = \lambda_{\rm BO} (\alpha_{\Lambda} + \alpha_n) \Delta T_{\rm FBG} , \qquad (1)$$

式中 $\Delta T_{FBG} = (T_H - T_O)$ 指工作温度的变化, λ_{BO} 指 在 T_O 温度下的布拉格波长, $\alpha_A = \frac{1}{A} \frac{\partial A}{\partial T}$ 指热膨胀

系数, $\alpha_n = \frac{1}{n_{\text{eff}}} \frac{\partial n}{\partial T}$ 指热光系数,近似为一常数。折射率 n_{eff} 随温度变化率要快于光栅周期随温度变化率,前者是布拉格波长改变的主要原因^[16,17]。有关DFB激光器的调谐机理详见文献[18]。

图 1 DFB-LD 横截面结构图

Fig.1 Schematic diagram of cross section of DFB-LD 由以上分析可知, DFB激光器的波长-温度曲 线有很好的线性,能够通过温度的改变精确地控制 波长,并且温度升高时,发射波长向长波方向移动。

3 实 验

快速温度调谐 TDLAS 实验装置如图 2(a)所示。商用 DFB 激光器组件模块一般包括 LD 芯片、

TEC、NTC 热敏电阻等元件。其中 TEC 是温度调 谐的核心元件,它与 TEC 电流驱动器连接,TEC 电 流驱动器的作用是提供给制冷器一个电流,电流的 正负决定其制冷或制热,电流绝对值的大小决定制 冷或制热的速度;计算机用来控制 LD 电流驱动器 驱动电流和 TEC 电流驱动器驱动电流的大小与波 形,并处理和保存模-数(A-D)转换器传送过来的 数据。

LD 快速温度调谐装置的工作过程为,计算机 设置 LD 和 TEC 的驱动电流,其中 TEC 驱动电流 的波形如图 2(b)所示,通过对 TEC 施加周期性的 阶跃电流,对 LD 组件的温度进行快速扫描,由

NTC 热敏电阻感测 LD 组件的温度。NTC 热敏电 阻两端的电压信号与气体吸收信号同时经放大、A-D转换后同时采集,送入到计算机处理保存。 图 2(a)中虚线表示测量气体直接吸收信号。通过 NTC 温度预估 LD 芯片的温度,并结合 LD 的驱动 电流以及先验的调谐特性^[18],实时预测的激光输出 波长。每次温度调谐过程中,都根据同时测量的 NTC 热敏电阻信号对波长重新计算,数据处理后得 到气体吸收光谱与波长(或波数)的一一对应关系, 从而保证了每次测量得到的光谱信号的重现性,不 受每次调谐过程中温度随时间的变化不严格一致的 影响。

图 2 (a)温度调谐 TDLAS 实验装置简图; (b)温度调谐过程示意图

Fig. 2 (a) Schematic diagram of temperature tuning TDLAS measurement system; (b) dynamic thermal tuning process

4 结果及讨论

基于图 2 所示的 TDLAS 实验系统,将激光器的 驱动电流设置为 50 mA 直流偏置,然后对激光器进 行温度调谐,将经气体吸收后的光信号经光电转换后 直接采集,得到直接吸收信号;然后再对激光器加一 个峰峰值为 47.5 mA、频率为 13 kHz 的正弦电流调 制信号,使用调制电流频率的 2 倍(26 kHz)正弦信号 作为锁相放大器的参考信号,即对吸收光谱做二次谐 波(2f)信号的检测,经 A-D 转换,获得气体 2f 调制 谱信号。实验中,光程池的光程长为 15 m,TEC 驱动 电流为-1.1 A(温度回扫时电流为+1.1A),激光器 的初始工作温度为 266.65 K(-6.5 °C),环境温度 296 K,CO₂ 体积分数为 10%,压强由密闭光程池控制 为恒压 10⁵ Pa。

当温度调谐范围为-6.5 °C~33.5 °C时,激光器的辐射波长的调谐范围为 6320~6336 cm⁻¹ (1578~1582 nm),记录下的 CO₂ 直接吸收信号和 2*f* 吸收信号结果分别如图 3 和图 4 所示,共包含 8 个吸收峰,并且可以得到 8 个吸收峰的位置。

根据 Beer-Lambert 定理

 $I = I_0 \exp[-\alpha(\nu) PL],$ 可以得到吸光度与吸收系数的关系:

$$A = -\ln \frac{I}{I_0} = \alpha(\nu) PL.$$
(3)

(2)

而吸收系数还可以由下式表述:

$$\alpha(\nu) = Sg(\nu - \nu_0)N, \qquad (4)$$

这里 I 为透射光强(W), I_0 为入射光强(W),A 为 吸光度,P 为探测气体的分压强(10^5 Pa),L 为气体

- 图 4 激光器温度调谐时温度与时间的变化关系以及同 时测算的 CO₂ 在 6320~6336 cm⁻¹的波长调制光 谱二次谐波(WMS-2*f*)信号
- Fig. 4 Measured DFB-LD temperature and synchronous wavelength-modulation spectroscopy with second harmonic detetion (WMS-2f) signal versus time during temperature tuning

吸收路径长度(cm), $\alpha(\nu)$ 为气体的吸收系数 (10⁻⁵ Pa⁻¹•cm⁻³),峰值吸收系数为 $\alpha(\nu_0)$,S为分 子吸收线强度(cm⁻¹•cm²), $g(\nu-\nu_0)$ 为归一化的线 型函数(cm),N为单位压强(10⁵ Pa,以下单位 压强均为此值)下单位体积内吸收气体的总粒子数 (10⁻⁵ cm⁻³•Pa⁻¹), ν 为激光频率(cm⁻¹), ν₀ 为中心 吸收频率(cm⁻¹)。

一般地,在室温条件下,当气压低于 2 kPa 时, 多普勒展宽起主要作用,曲线的线型为高斯曲线;当 气压接近大气压时,碰撞加宽起主要作用,曲线的线 型为洛伦兹曲线^[19,20];当气压介于二者之间的时 候,多普勒展宽与碰撞加宽共同起作用,曲线的线型 为 Voigt 曲线。

因此,为了简化分析,可以假设室温下气体压强为 10⁵ Pa 时的吸收线型为洛伦兹线型,即

$$g_{\rm L}(\nu - \nu_0) = \frac{1}{2\pi} \frac{\Delta \nu_{\rm L}}{(\nu - \nu_0)^2 + \left(\frac{\Delta \nu_{\rm L}}{2}\right)^2}, \quad (5)$$

$$\Delta \nu_{\rm L} = 2\gamma (296/T)^n P, \qquad (6)$$

式中 $\Delta \nu_L$ 为碰撞展宽[半峰全宽(FWHM)], T 为 温度,n 为温度系数。

实验中 CO₂ 体积分数为 10%,单位体积内单位压 强下的 CO₂ 分子数为 1. 3485×10²⁴,光程长 1500 cm, 压强为 10⁵ Pa,温度为 296 K,由(3)~(6)式,并结合直 接吸收实验测得的 $\Delta \nu_{L}$,可以得到测得的 CO₂ 分子吸 收峰处的线强,并将结果与 HITRAN2008 数据库^[21]进 行了比较,结果如表 1 所示。

表1 温度调谐测量得到 CO₂ 气体在 6320~6336 cm⁻¹波段的 8 个较强吸收线光谱参数与 HITRAN 2008 谱库中比较 Table 1 Comparison of measured spectral parameters and HITRAN 2008 for 8 strong absorption

	HITRAN 2008			Measured data			
Wave number / cm^{-1}	Line strength /	EWLIM /	Wana mumban /	Line strength /	FWHM / cm ⁻¹	Line strength deviation / %	FWHM
	$(10^{-23} \mathrm{cm}^{-1} \bullet$	Г W П IVI / —1	wave number /	$(10^{-23} \mathrm{cm}^{-1} \cdot $			deviation /
	cm ²)	cm 1	cm -	cm ²)			0⁄0
6334.4648	1.6080	0.1756	6334.4641	1.5748	0.1656	-2.06	-5.69
6332.6577	1.5780	0.1794	6332.6580	1.5506	0.1750	-1.73	-3.01
6330.8213	1.5070	0.1832	6330.8220	1.4748	0.1813	-2.13	-2.16
6328.9556	1.4030	0.1870	6328.9563	1.3696	0.1867	-2.38	-0.16
6327.0609	1.2750	0.1912	6327.0636	1.2648	0.1914	-0.80	0.10
6325.1374	1.1330	0.1954	6325.1326	1.1263	0.2023	-0.59	3.53
6323.1852	0.9862	0.1996	6323.1825	0.9923	0.2078	0.62	4.11
6321.2046	0.8407	0.2040	6321.2084	0.8476	0.2086	0.82	2.25

lines of CO2 at 6320 \sim 6336 cm $^{-1}$

结果表明,波数最大辨识偏差值小于 0.004 cm⁻¹ (2 pm),峰值吸收线强度相对偏差小于 3%,实测线 宽偏差小于 6%。

仔细观察图 4 的 2*f* 信号,发现在 8 个强吸收线 之间存在着一些弱的吸收。

为了更加清楚地分析得到弱吸收线的位置、线 宽等信息,向光程池中充入体积分数为 99%的 CO₂ 气体,2*f*吸收谱信号及其弱吸收信号细节分别如 图 5和图 6 所示。在图 5 中,由于信号的最大值已 超出了采集卡允许的最大值(±10 V),因此出现了 顶部和底部的截止,但这并不影响对弱吸收信号的 分析。从图中可以清楚地观察到这些弱吸收。

为了更好地观察弱吸收的信息,将图 5 中的纵坐 标范围缩小,结果如图 6 所示。从图 6 可以发现在 8 个强吸收线之间共有 14 个弱吸收线。首先给出这 14 个弱吸收线的位置,接下来根据图 4 中强吸收线和弱 吸收线的信号峰高和线宽比例关系,给出了峰值吸收 线强和线宽,结果如表2所示,发现弱吸收线的线强

Fig. 5 WMS-2f spectral signal of CO_2 at $6320 \sim 6336$ cm⁻¹ after filled with 99% volumn fraction CO_2 gas

相比强吸收线小了 2 个数量级。将弱吸收线的光谱 参数与 HITRAN 2008 中的相应数据对比,如表 2 所 示,结果表明测量数据与谱库数据相吻合。但第一个 弱吸收线的线宽测量值约为谱库中线宽值的 2 倍,其 原因是在与其位置(6320.1278 cm⁻¹)很接近的地方 (6320.1865 cm⁻¹),存在一个与之相当的吸收(线强 为1.05×10⁻²⁵ cm⁻¹•cm²),在调谐激光光谱检测时, 两个谱线由于距离太近(约0.06 cm⁻¹)而不能被分 辨,光谱发生了重叠,表现为谱线展宽。

表 2 CO₂ 在 6320~6336 cm⁻¹的 14 个弱吸收线的位置、吸收强度和 FWHM

Table 2 Measured line positions, absorption intensities and FWHM of 14 weak absorption lines of CO₂ at

 $6320 \sim 6336 \text{ cm}^{-1}$

		HITRAN 2008			Measured data	
No.	Line position /cm ⁻¹	Line strength $/(10^{-25} \text{ cm}^{-1} \cdot \text{ cm}^2)$	FWHM /cm ⁻¹	Line position /cm ⁻¹	Line strength $/(10^{-25} \mathrm{cm}^{-1} \cdot \mathrm{cm}^2)$	$FWHM / cm^{-1}$
1	6320.1278	1.200	0.170	6320.1203	4.16	0.2990
2	6322.2201	1.350	0.168	6322.2166	4.07	0.1827
3	6324.2304	1.710	0.172	6324.2640	2.72	0.1777
4	6326.2175	2.130	0.178	6326.1819	3.57	0.1711
5	6326.4421	2.360	0.176	6326.4321	4.42	0.1622
6	6327.6138	0.414	0.192	6327.6147	1.83	0.1341
7	6327.6521	0.393	0.174	6327.8765	1.14	0.1632
8	6328.1810	2.590	0.178	6328.157	4.20	0.2104
9	6328.4874	2.850	0.180	6328.4415	4.48	0.1686
10	6330.1208	3.100	0.184	6330.1186	5.31	0.1863
11	6330.5027	3.380	0.186	6330.4391	2.14	0.1270
12	6332.0369	3.640	0.188	6332.0221	5.30	0.1670
13	6333.9289	4.180	0.188	6333.8984	6.18	0.1774
14	6335.7968	4.700	0.194	6335.7481	7.58	0.1693

根据表1和表2中给出的CO2在6320~ 6336 cm⁻¹波段的吸收线强度、吸收线中心频率和 FWHM等参数,用洛伦兹线型来拟合此波段的吸收 线,结果如图 7 所示,包括 8 个强吸收线和 14 个弱吸 收线。为了更好地显示弱吸收,纵坐标采用对数坐 标形式。

- 图 7 洛伦兹线型拟合得到的 CO₂ 在 6320~6336 cm⁻¹ 波段的吸收谱线
 - Fig. 7 Absorption spectral line of CO_2 at 6320 \sim 6336 cm⁻¹ obtained by Lorentz line fitting

5 结 论

针对当前 TDLAS 技术中调谐范围、调谐时间 以及系统复杂性方面存在的不足,提出了利用激光 器模块中的 TEC 和 NTC 热敏电阻等元件对 LD 进 行快速宽谱调谐方法,并在快速温度调谐过程中精 确计算激光器的辐射波长,该方法可用于光谱学、光 通信等领域。

利用温度调谐 TDLAS 系统在 3s 的测量时间内 测得了 CO₂ 气体在 6320~6336 cm⁻¹ 波段的直接吸 收信号和 WMS-2*f* 信号,得到了 8 个强吸收线和 14 个弱吸收线的位置、线强和线宽等数据,结果与 HITRAN 2008 谱库中的数据相吻合。因此,快速温 度调谐的方法可以对单一气体在某一谱段的精细谱 进行研究,也可以实现两种或多种气体的同时检测。

参考文献

- Xia Hui, Liu Wenqing, Zhang Yujun *et al.*. On-line monitoring and analysis of long open-path methane based on laser absorption spectroscopy[J]. *Acta Optica Sinica*, 2009, **29**(6): 1454~1458 夏 慧,刘文清,张玉钧等. 基于激光吸收光谱开放式长光程的空 气中甲烷在线监测及分析[J]. 光学学报, 2009, **29**(6): 1454~1458
- 2 Kan Ruifeng, Liu Wenqing, Zhang Yujun *et al.*. Infrared absorption spectrometer of monitoring ambient methane[J]. Acta Optica Sinica, 2006, 26(1): 67~70 阚瑞峰,刘文清,张玉钧等. 基于可调谐二极管激光吸收光谱的

兩項輕, 列又得, 张玉钧等, 盔丁可洞道二级首级无吸收无情的 大气甲烷检测仪[J]. 光学学报, 2006, **26**(1): 67~70

- 3 Tingdong Cai, Guangzhen Gao, Weidong Chen *et al.*. Simultaneous measurements of CO_2 and CO using a single distributed-feedback (DFB) diode laser near 1.57 μ m at elevated temperatures[J]. *Appl. Spectros.*, 2011, **65**(1): 108~112
- 4 Yang Bin, He Guoqiang, Liu Peijin *et al.*. TDLAS-based measurements of parameters for incoming flow hot-firing test of air-breathing rocket engine[J]. *Chinese J. Lasers*, 2011, **38**(5): $1 \sim 6$
- 杨 斌,何国强,刘佩进等.利用 TDLAS 技术开展吸气式发动 机来流热试实验参数测量[J].中国激光,2011,38(5):1~6
- 5 Chen Dong, Liu Wenqing, Zhang Yujun. Time sharing scanning

multiplexing method of tunable diode laser spectroscopy system [J]. Acta Photonica Sinica, 2009, **38**(8): 1901~1905

- 陈 东,刘文清,张玉钧.调谐半导体激光光谱分时扫描多路方法[J]. 光子学报,2009,**38**(8):1901~1905
- 6 B. Jens, C. A. Markus, J. B. Daniel. Tunable Laser Diodes and Related Optical Sources [M]. New York: John Wiley & Sons, 2005. 222
- 7 Zhao Yanjie, Chang Jun, Wang Chang *et al.*. Research of fiber couple parameters monitoring system of methane and temperature [J]. *Chinese J. Lasers*, 2010, **37**(12): 3070~3074
- 赵燕杰,常 军,王 昌等.光纤甲烷温度双参数检测系统的研究[J]. 中国激光,2010,**37**(12):3070~3074
- 8 H. Ishii, F. Kano, Y. Tohmori *et al.*. Narrow spectral linewidth under wavelength tuning in thermally tunable superstructure-grating (SSG) DBR lasers [J]. *IEEE J. Sel. Topics Quantum Electron.*, 1995, 1(2): 401~407
- 9 M. Aidaraliev, N. V. Zotova, S. A. Karandashov *et al.*. Midwave $(3 \sim 4 \ \mu m)$ InAsSbP/InGaAsSb infrared diode lasers as a source for gas sensors[J]. *Inf. Phys. Technol.*, 1996, **37**(1): $83 \sim 86$
- 10 A. Ray, A. Bandyopadhyay, B. Ray et al., Line-shape study of water vapour by tunable diode laser spectrometer in the 822~832 nm wavelength region [J]. Appl. Phys. B, 2004, 79 (10): 915~921
- 11 D. Weidmann, D. Courtois. High quality infrared (8 μm) diode laser source design for high resolution spectroscopy with precise temperature and current control[J]. Inf. Phys. Technol., 2000, 41(6): 361~371
- 12 V. Weldon, J. O'Gorman, P. Phelan et al.. H₂S and CO₂ gas sensing using DFB laser diodes emitting at 1.57 μm[J]. Sensors and Actuators B, 1995, 29(1-3): 101~107
- 13 Hui Jia, Weixiong Zhao, Tingdong Cai et al.. Absorption spectroscopy of ammonia between 6526 and 6538 cm⁻¹[J]. J. Quant. Spectrosc. & Radiative Transfer, 2009, 110(6-7): 347~357
- 14 Weixiong Zhao, Xiaoming Gao, Lunhua Deng et al.. Absorption spectroscopy of formaldehyde at 1.573 μm[J]. J. Quantitative Spectroscopy & Radiative Transfer, 2007, 108(2): 331~339
- 15 R. Lewicki, G. Wysocki, A. A. Kosterev*et al.*. Carbon dioxide and ammonia detection using 2 μm diode laser based quartzenhanced photoacoustic spectroscopy[J]. *Appl. Phys. B*, 2007, 87(1): 157~162
- 16 M. Fukuda, T. Mishima, T. Nakayama *et al.*. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy[J]. *Appl. Phys. B*, 2010, **100**(2): 377~382
- 17 W. T. Tsang. Semiconductor Injection Laser [M]. New York: John Wiley & Sons, 1990. 208
- 18 Liu Jingwang, Du Zhenhui, Li Jinyi *et al.*. An analytical model for the tuning characteristics of the static, dynamic, and transient behavior on temperature or injection current of DFB laser diodes [J]. Acta Physica Sinica, 2011, **60**(7): 074213 刘景旺, 杜振辉, 李金义等. DFB 激光二极管电流-温度调谐特 性的解析模型[J]. 物理学报, 2011, **60**(7): 074213
- 19 Bai Yunfeng. Monitoring the Concentration of Carbon Dioxide by Tunable Diode Laser Absorption Spectroscopy [D]. Harbin: Harbin Institute of Technology, 2006. 21 白云峰. 二氧化碳浓度监测的二极管激光光谱技术研究[D]. 哈 尔滨:哈尔滨工业大学, 2006. 21
- 20 Li Ning. Research on Gas Detection and 2D Distribution Reconstruction by Tunable Diode Laser Absorption Spectroscopy Technique[D]. Hangzhou: Zhejiang University, 2008. 20
 李 宁. 基于可调谐激光吸收光谱技术的气体在线检测及二维 分布重建研究[D]. 杭州:浙江大学,2008. 20
- 21 L. S. Rothman, I. E. Gordon, A. Barbe et al.. The HITRAN 2008 molecular spectroscopic database[J]. J. Quant. Spectrosc. & Radiative Transfer, 2009, 110(2): 533~572